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Al-Maaref University College, Iraq-Al-Ramadi  
        Abstract  

This paper presents the concept of association rules through the intellectual analysis with the aim of bug 

fixing. Finding the association rules allows determining the relations or connection between the specified values 

of categorical variables in large databases. This problem is often met in many projects on Data mining (knowledge 

discovery in databases process). Such research methods have many applications in many fields of business and 

research – starting from the consumer demand analysis or human capital management and up to the history of 

language. The association rules definition method is based on three statistic indicators, being calculated for pairs 

of objects (events, which happen simultaneously) in the data, named "Cause" and "Sequence"- Support (how often 

"Cause" and "Sequence" objects in the data are met, Trust (probability of the fact how often both objects "Cause" 

and "Sequence" among the data are met together) and Correlation (support for "Cause" and "Sequence", divided 

into square root of the support result for "Case" and support for ‘Sequence"). The aim of the method is finding 

the type of the links "If "Cause", then "Sequence". The main problem of the conformity detection methods is the 

enumeration of possibilities within the acceptable time. The known methods either artificially restrict such 

enumeration or build the decision trees, having principal search efficiency restrictions of "If-then" rule. Other 

problems are connected with the fact, that known association rules searching technique do not support the 

generalization function of the found rules and the optimal composition search function for such rules. A successful 

solution to the indicated problems can make a subject of new competitive developments.  

Keywords: data mining, association rules, software, Apriori algorithm, evolutionary software.  

 

Introduction 

The most popular application for the development of association rules is the analysis of market basket. On the 

basis of sales transactions often templates are usually viewed and come back as unification precepts. One of the 

prevalent examples the shoes with socks are frequently for sale along with. Such data is the price for cross-selling, 

which increases the total volume of company sales. Tool ROSE (Reengineering Software Evolution) makes the same 

for software developers (SW). He is searching templates in the story of versions and represents related objects in 

representation next to the original code. However, ROSE's goals are not to increase the total number of changes by 

developers, but simplifying navigation on the original code and avoiding of errors because of the lack of updates [1-

5].  

In this article methods, used by ROSE for confirming of its functionality are analyzed. We start from the construct 

of unification precepts and let us display how ROSE utilizes them. Show general method of intellectual analysis, 

named Priory algorithm, and then present improved algorithm of intellectual analysis for ROSE.  

1. Problem area analysis 

1.1. Pre-processing of the data.  

Extraction of data from CSV has lit very well and many tools are available for free. In [6] the tool Soft Change, 

which extracts and pools the data from CVS databases and monitors errors is presented [7]. In [8] BLOOF system, 

which extracts data from CVS journal file into the database and visualizes the evolution of software with the use of 

indicators is developed [9].  

In [10] it is indicated how a database of release story, connecting data from CVS and BUGZILLA should be 

filed, the algorithm of mergers version detection is proposed. In [11] the same authors connected their approach with 

specialties of HIPICAT, which considers few data sources. They combine information from the lists of CVS, 

BUGZILLA scatter and developers, using text similarity.  

A transaction lifting was used by many approaches, but it was not described in details anywhere. In [13] fixed 

time frames were used for this. Up to now only a few approaches [13] considered minor changes In [14] relations 

between classes were analyzed In [15] it is shown how analysis of the origin for determination of the merge and 

functions division should be used.  

Nevertheless, purification of data is often ignored and still many possibilities for improvement remain.  
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1.2. Development of the software. 

In [16] Ying tool, which uses the rule of rules integration in archives of CVS versions is developed. In contrast 

to ROSE, Ying can analyze only the level of files, but not finite main points and does not support analysis on-the-spot. 

In [17] data mining in the initial code of programming libraries is used for determination of reuse pattern in the form 

of association.   

To guide programmers the number of tools used log messages text similarity [18] or program code [19]. In [12] 

these results are improved at the expense of usage of such sources as post archives and online documentation.  

Unlike ROSE, all these tools are focused on high recall, but not on a high accuracy, as well as on relation between 

files or cells but not between indistinct objects. 

2. Association rules 

Аassociation rules present template. Let us say, the succeeding rule presents some template {f Keys[], init 

Defaults(). Plug in. properties} in ECLIPSE story versions: 

Shift (f Keys[])⇒shift(init Defaults())∧ 

∧shift(plug in. properties) [0.888] 

For this rule two different interpretations exist:  

1. Descriptive interpretation goes back to the past: every time, when the client shifted the field {f Keys[], it also 

shifted in it Defaults()method and file plug-in properties with certainty in 88,8%. 

2. On the contrary, intellectual interpretation (as ROSE is used) is guided to after time : presently this principle 

means that every time when the client change field f Keys[], it as well must edit the mode in it Defaults() and data set 

plug-in internals. Here «must» indicates that the precept is based on the experiment (with credibility in 88,8%) and it 

is not an absolute truth; Symbol «⇒», in such a way should not be read as logical meaning, which is always performed.  

As it was adverted above, the precepts have probability exegesis, founded on the quantity of proofs in activities 

from where they were obtained. This quantity of proofs is defined by three gauges:  

Quantity. Quantity (or frequency) define the quantity of transactions, from which the rule was obtained. Let's 

assume, that f Keys[] was changed in 9 transactions. From these 9 transactions 8 too comprised the change as a method 

in it Defaults(), as well as file plug-in properties. The quantity for the aforementioned rule is equal to 8. 

Support. Support connects the rule frequency with a common quantity of transactions. Because of the fact that 

ECLIPSE has 44786 transactions, support composes 8/44786 = 0,00018. 

Confidence. Determines frequency in sequences, if left part of the rule is met. In the aforementioned rule, the 

sequence of initial Defaults() change is applied in 8 and 9 transactions with fKeys[]. Consequently, the statement for 

abovementioned rule is 8/9 = 0,888. 

formally determination of unification precepts we accept:  

Let’s  1, ..., nI i i  - is a set of all elements, recognized during preprocessing. Review, which is an element of 

the essence e , joint, for example, with action, changes the object e . Let’s D  - data, related to the problem, i.e. set of 

all transactions, where each transaction T represents the set of elements, such, that T I . 

The rule of association is a magnification of the shape A B , where A I , B I  and A B  . A previous 

precept is A , and investigation B . Ordinarily A and B  are connections, but can use any proposal. But, we will 

concentrate on alliances. Pro forma we determine the frequency, aid, and credibility of the unification precept in the 

following way:  

- a frequency of setup X  in pertinent for data transmission D  is determined as 
  { ,  }|.Dfrequency X T T D X T    

A frequency of unification rules A B  in relevant for data transmission D  is determined as: 
( ) ( ).frequencyD A B frequency A B    

- support of the kit X correspondent problems D  is determined as: 

 
 

( ).
| |

D
D

frequency X
support X P X

D
   

The aid of the association precepts A B  in data D , correspondent to problems is determined as:  

 
 

( ).
| |

D
D

frequency A B
support A B P A B

D


   
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- satisfaction of unification precept A B  in data D , correspondent to problems is determined as:  

 

 
( ) ( | ).

D
D

D

frequency A B
A B P B A

freq
confidenc

u
e

ency A


    

We omit relevant data for the problem D , if they are known in the context or not actual. The abbreviated 

designation  ;r s c indicates a precept r  с  s support r and  confic rdence . 

For the kit of elements I , there is more probable precepts exit: every of 2
I

 templates promotes to one or more 

rules. In such a way, for reducing the general rules number the threshold values are used  _support min supp and

 _confidence min conf . The rule r is named powerful then and only then, when   _support r min supp and

  _rcon mfid ine c fn e con . 

It is obvious that the reference riffle can take the      place of a frequency riffle:                                                 
._ _min freq dmin supp D   

ROSE utilizes frequency vice of aid for two causes:  

1. The frequency for the developers is understood. Meanings of support, such as 0.00018, don't give an 

opportunity to understand if this meaning high or low. On the contrary, correspondent frequency 8 explicitly expresses 

the importance of the rule. 

2. Frequency permit to compare miscellaneous projects. It is impossible to reuse reference riffle for other 

projects. Descry ECLIPSE with the sum of 44786 deals and JEDIT – totally 1905 deals. Utilization  min_supp=0.0001, 

we conduct in ECLIPSE with min_freq=10, but in JEDIT alone with min_freq=1. Usage of such low-frequency riffles 

is not sensible.  

Reliability is an indicator for distinctness. Confirmation of the rule may be a fallacy, as shown below: 

 B  B  
 

A  
15% 10% 25% 

A  
65% 10% 75% 

 80% 20% 100% 

Let’s consider a rule A B  with high probability degree  

 
 

This rule is misleading because has a high probability, but appearance A actually reduces the probability B of 

p(B)=0,80  to p(B/A) =0,60. This supervision led to the development of unification rules called correlation 

analysis.                                                                                                                              It is not important for ROSE 

if the rule is false or not. In given below example B changed on 60% after the change A  and that is why remains 

important for developers. 

Meaning of precept support is a gauge of its statistic relevance. If the as follows conditions are met: A and B , 

probably, are independent, and their joint appearance in transactions happens by chance:  
      .support A B support A suppo t Br   

However, it is not related to the as follows circs: 

       .support A B support A suppo t Br ?  (1) 

This term can be transferred into the equation, based on the assurance in the rule:  
      .support A B support A suppo t Br ?  

 

 
  .

support A B
support

suppor
B

t A



?  

 

 
 

| |
.

| |

frequency A B
support

frequen

D

cy A
B

D






  
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     .Ac Bonf siden upce Bport ?  (2) 

However, we can define the higher boundary for  support B . Obviously, that support is maximal for  the

singleton B .                                                    

In most cases, this estimation is significantly lower than 10%. In such a way, using probability threshold not less 

than 10%, ROSE is located in the safe zone and can delay significance verification. For projects rated higher than 

10% ROSE, most likely, will recommend the objects, which are not statistical considerable, but still are acquitted (for 

example, TODO.txt for JEDIT).  

As soon as programmer starts inserting changes, ROSE client proposes possible further changes. This is 

performed in the way of correspondence rules application. generally, two concepts of correspondence matching rules:  

Low correspondence.         The rule                           A B   corresponds to the set of elements   (for          

example, changed objects), if the antecedent is a subset  , then A .          

Strong correspondence. The rule corresponds to the set of elements  if this totality is equaled bygone of the 

rule, i.e. this precept B . 

Either concepts antecedent of the precept is satisfied, but alone for powerful correspondence, it is executed 

accurately. We consider the kit of elements  as context, where ROSE gives recommendations. Remind, that element 

is a tactic, for example, change or essence.   

 
Fig. 1. Example for preference ECLIPSE 

Accounting of weak correspondence rules is not reasonable because it passes by the cutoffs of support and 

probability. Let's assume that we have three functions ()f , ()g and ()h . Functions ()g and ()h  excludes each other. 

In such a way, the powerful rule () () ()f g h   does not exist, because it does not have aid. The client shift ()f  and

()g . utilization low correspondence, we consider the rule () ()f h and spuriously advise ()h , expelled by the 

appearance ()g . In such a way, ROSE utilizes alone powerful rules and powerful correspondence.  

How does ROSE calculate assertions? The kit of assertions for context   and kit of precepts R  is determined 

as the integration of the sequences of all correspondence precepts:  

( )

( ) .R
B R

apply B

 

   

Let’s suppose, that the problem of a coder is to deepen ECLIPSE with a recent precedence. Commonly 

precedence composed GUI details, Value for reduction and description (Fig. 1). Let programmer deepened set of 

lattice points []fKeys  in a file.                    ComparePreferencePage.java. In such a way, a situation 1  is the following: 

 1 ( []) . change fKeys   

ROSE contains many appropriate precepts for this context; One of them is r : 

 

 
Utilization the precept r  in this context 1 , ROSE proposes investigation r : 

 
 

1 { ,

. }

( (

.

) ( ))rаpply change initDefaults

change plugin properties

 
 

However, all kit R of really found precepts contains additional contexts. In fact, ROSE uses powerful rules for 

recommendations. 

Suppose that the client determines to abide by the first guidance for in it Defaults() (off assurance 1.0). Obviously, 

a new preference should get the default value. That is why it shifts the as it Defaults(). ROSE more shifts, which in 
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this instance are also as earlier, excluding the fact that now in it Defaults() is absent. Now situation additionally 

contains in it Defaults(): 
 2 ( []) ( ()), . change fKeys change initDefaults   

The client examines the methods makes General Page() and create Text Compare Page(), because they are located 

in the same file where f Keys[] does and initDefaults(). Each of these two techniques makes a page, where the setting 

could be customized. (on the Fig. 1 the page General is opened). Now it deepens method create General Page(), in the 

result of which arises a new situation 3 : 

3 ( []) ( ())
( ()

{ ,  
)

,
}.

change fKeys change initDefaults
change createGeneralPage

 
 

Present this context, minimal support 3 and minimal probability 0,5, ROSE calculates the next precepts : 

    3 .  5;1 ..0change plugin properties   

   3 (  3;0() .6) .change TextMergeViewer   

   3 (  3;0() .6) .change propertyChange   

    3 .  3;0.6 .change build html   

Applying aforementioned rules, we obtain sequence integration of all precepts, as they have the idem bygone 

and correspond to the context 3 . ROSE estimates an essence according to their assurance, having proposed to the 

client to shift the data set of plug-in. This data set contains specifications, which are utilized for the marks of 

precedence (for example, “Automatic comparison of opened structure” on the Fig.1). 

In the two following sections, methods of intellectual analysis are represented: algorithm Apriori finds all 

powerful rules; ROSE touch finds only powerful and coincident rules. Correspond rules or not, depends on the 

situation  , where ROSE caused. 

3. Priori approach to the intellectual analysis association precepts 

One of the many well-known touches for detection of all-powerful unification precepts is A priori algorithm. It 

uses threshold value min_supp and min_conf, as well as corresponding data to the problem D as initial. 

Inside A priori algorithm represent templates with the set of elements. ite tk mse  – is a set of elements os the 

size k . Set of elements is named frequently if it responds the threshold of frequency (or support). The kit of all frequent 

sets k -objects is designated as kL . 

A priori attribute assists to shorten the area of scan for frequent sets of subjects: All not blank sub kits of frequent 

sets of objects should too be common. 

It is clear because support is increasing if elements X are removed from the set of items    :I P I P I X  . In 

such a way, i I t was common,  _min supp P I then I X  will be also common: 

   _min supp P I P I X   . 

A priori algorithm composed of two stages: 

1. A search of all private object sets. 

Frequents sets of elements are generating at the level: at first 1L is calculated, then 1L  is used for determination

2L , which is used for calculation 3L , and so on. This phase is completed, if more frequent k  -elements are not found. 

Every layer, i.e. creating a set kL , consists of four steps: 

a. Binding step: 

The applicant ite tk mse kC is created by integration 1kL   with itself. The term of integration is the fact that first 

1k  elements of two sets 1l  and 2l are equal, and only the latest details are different    1 2l k l k . 

b. Trimming step: 

Deleting of object sets from kC , some cannot be frequent with the help of Apriority property. Verification if the 

subsets are private or not can be performed quickly, basing on the hash-tree of all frequent object sets.  

c. Scanning or calculation step: 
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 Scanning of databank D  and calculation the frequencies of every remained applicant to kC . 

d. Creation step: 

By the frequent sets k of elements kL  are those subsets in kC , which satisfy the threshold of the frequency value. 

A search of frequent element sets – the most labor-intensive part of A priori algorithm. For each layer the 

complete scanning of a database is required. In such a way, the support frequency (or threshold) has a great influence 

on the working time.               .                            2.Creating of association rules of frequent element sets.  

For each element set l  all non-empty sub kits s are constructed. Such sub kit leads to the precept s l s   then 

and alone then, when: 
 

 

 

( ) |

_ .

s l s P l s s

frequency l s
min conf

frequency s

confidence     


 

 

Check on the threshold of frequency (or support) can be ignored, as the precepts are constructed of frequent 

elements sets, and so the next check is ever faithful:  
 ( ) ( _ .)support s l s P l s s P l min supp        

 

Work on A priori algorithm. 

Candidate 1-element 1C  matches to the kit of all elements I . The step of calculation shows, that elements { }E  

are not private. Then applicant of the 2-nd set 2C  generates in the way of binding of 1L  с with itself ( 2C  is always 

cross-product of 1L ). Along with 2k  any elements cannot be deleted, because all the subsets are single-point and 

are always contained in 1L . Calculation step identifies { },B D  and { },C D  as not common. Then applicant of 3-set 

3C  generates of 2L , using the condition of binding              1 2 1 21 1 2 2l l l l   . This repays three element sets. 

Two of them are not private according to the Apriori attribute and are cut: for { , , }A B D sub kit {B, D} is not private, 

and subset { , , }A C D of the points{ , , }A C D  is not common. For the third applicant { , , }A B C verifying of the databank 

confirmed that it is common. When all frequently used elements were detected, each element sets in 2L and 3L  is used 

for precepts creation. Assurance is calculated for every precept and alone powerful precepts are returned. 

Apriori property can only say that the set of objects is not frequent. Verification of element sets should always 

check database.  

Apriori algorithm has a few disadvantages: D  database is frequently scanned for each layer of frequent element 

sets creation. Besides, the formation of applicant kits is expensive. If there are 
4

10 frequent 1-element sets, around

8
10  candidates of 2-element sets are generated. Furthermore, in order to detect a template of 100 sizes, Apriori 

algorithm should make more than
100

2  applicants. 

It is might find unification precepts on the basis of frequent pattern-growth (FPG) algorithm, which allows not 

only avoid costly procedure of candidates generation but also reduce the necessary number of DS approaches to two. 

4. ROSE Approach to the search for association rules 

The classic usage of A priori algorism is to calculate all the precepts more than minimal aid and assurance. 

However calculation of all concepts it is advisable for the scan of general templates, but not for providing 

recommendations.  

A priori covering is very low. Sweep is linearly proportional to the quantity of separate bygones in the set of 

concepts R . High sweep is advise, so in this case ROSE can give prescriptions in most of occasions. Low sweep 

indicates that ROSE is frequently not effective. 

Sweep may be enlarged in the way of R set deepen, for example, in the way of reduction of assurance and 

especially reference threshold. However for very low thresholds Apriori support can take several months. A narrow 

place is not Apriori, but those circumstances, that R  becomes very big – bigger than 
| |

2
I

 in the worst occasion. 



 The Rules of the Intelligent Software Analysis Association 

Yousif Hardan Sulaiman 

 

  665 

 
V. 27-2018 

Certainly, very low steps of support have bad effect on recommendation character. Nonetheless, the developer 

should have possibility to determine thresholds aid meanings, but not only industrial borders, constructed by A priori 

algorism. 

Scan of expensive compliance precepts. How it was mentioned before , R  becomes highly big – for most 

projects production of numbers of transactions. In such a way, search of conformity precepts is costly, if R  does not 

store in memory and there are no appropriate subject-heading frameworks.  

In such a way, ROSE uses his own algorithm, which finds alone needed precepts on-the-spot. This algorism is 

based at two optimizations:  

Analysis with limited bygones. In our concrete occasion bygone is even to the situation. Consequently, we have 

alone precepts, found on-the-spot, which correspond to the context  , i.e. rules, for which B . Search of the rules 

with such limited antecedents occupies just a little seconds. Complementary edges of such treatment is that additional 

in that meaning that permits to add new transaction to D  between two contexts. In such a way, recommendations are 

always actual.  

Analysis of only sequences. In order to speed up a process of search even more, we calculate only the precepts 

with one element in their result. So, for the context   the precepts have the kind of  i . For ROSE such precepts 

are enough, so ROSE in any case calculates sequences association. In such a way, review of non single-element 

sequences is excessive: for each element i B  rules  ;B s c  single-element rule exists   ;i si ci  with a 

higher or equal support and certainty meaning is s  and ic c , i.e.  ( ) ( ).frequency i frequency B    

Algorithm of search ROSE consists of three stages:  

Transactions search. Search of all deals T , containing all elements of   context, i.е. T . Let’s denote these 

transactions as 
( )TransactionID Lineitems  . 

Grouping and sorting. Grouping of elements 
( )TransactionIDLineitems Lineitems    

Of these transactions according to EntityID and their descending sorting.  

Creation of rules. One single-element rule corresponds to each group.  

- frequency   is a maximal number of groups (that is possible to element groups i  and always right for the 

first returned group).  

-account for element group i is a frequency of the rule  i . 

- Certainty of the rule  i : 

( {i})
.

)(

frequency

frequency




 

- to disregard trivial rules  i , i . 

Only the rules, satisfying the support threshold and certainty are returned.  

On the Fig. 2 the example of search algorithm ROSE is shown. Let’s assume, that situation  ,  A B . Firstly, 

ROSE performs the search according to all transactions: 2, 100, 300 and 700. Then it groups namely these transactions 

according to the elements and sorts them in descending order. The biggest account for element A , that is why 

frequency for   is equal to 3. The precepts for A and B  are toil (because both of them are located in the situation), 

that is why they are ignored. 

Situation  ,  A B and 2k   . 

Creation of repeated k-element and k+1-element sets, which containing  . 

TxID List of 

items 

 TxID List of 

items 

 

100 

200 
300 

400 

A, B, C 

A, D 
A, B, C 

B, D 

 100 

300 
700 

A, B, C 

A, B, C 
A, B 

 

find
   

group&sort
   
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500 

600 

700 

A, D 

B, E 

A, B 

  

 

 Item Frequency  

group&sort


 

A B C 3 3 2 ⇒ {A, B} 
⇒{A, B} 
⇒{A, B, C} 

 

Creation of single-element rules with antecedent  . 

article periodicity  

A B C periodicity(Σ) =3  

3 
2 

{A,B} ⇒ {A} is toil 

{A,B} ⇒ {B} is toil 

{A,B} ⇒ {C} has periodicity =2, 

assurance =2/3 and is powerful 
Fig. 2. Example for ROSE algorithm 

(min_freq=2; min_conf=0,5) 

For C  the precept { } { },A B C   is powerful, so threshold meanings for min_freq и min_conf are contented.  

Aforementioned optimization makes algorithm of search much more effective: average duration of making a 

request is around 0,5sec for huge versions as GCC.  

ROSE provides one more search algorithm for individual antecedent 1-element precepts{ } { }a b . Such precepts 

are less accurate for a prescription, but the prices for measuring and visualization of the connection among the objects. 

Algorithm is exactly like A priori algorithm, represented in ( p. 3), except that only two frequently used element sets 

are generated and used for the rules creation. 

5. Evaluation of  results  

For our estimation, we have analyzed chanceries of eight huge plans with opened initial code, table 1. For each 

archive we have chosen several full months, containing latest 1000 deals, but not above than 50% of all deals as our 

estimation period. In this period we test every deal T , if its elements may be foretold from above anecdote: 

1. Creating a check of occasion  ,q Q E ,  consisting of a request Q T  and the anticipated result E T Q  . 

2. Accept all the deals iT , finished until time ( T ), as a teaching kit, and comply with a set of rules R from these 

deals. 

3. In order to get away the usage of infinite list of offers, ROSE shows only ten single precepts 10R R , estimated 

according to the level of certainty. Apply 10R , in order to obtain the request result  
10q RA apply Q . The scale qA  

will ever be under or equal to ten.  

Table 1. Analyzing projects (Txn=transaction, Ety=essence) 

Draft (in CVS 

with) Depiction 

History (Training) Evaluation 
#Txns1 #Txns/Day #Etys/Txn #Txns 

ECLIPSE 
integrated 

environment 

46,843 56.0 3.17 2,965 

GCC compiler 
collection 

47,424 22.4 3.90 1,083 

GIMP image 
manipulation tool 

9,796 4.1 4.54 1,305 

JBOSS application 

server 

10,843 9.0 3.49 1,320 

JEDIT text editor 2,024 2.9 4.54 577 
KOFFICE office 
suite 

20,903 11.2 4.25 1,385 

POSTGRESQL 
database system 

13,477 5.4 3.27 925 

PYTHON 
language + library 

29,588 6.2 2.62 1,201 

4. The product qA  of the check example q compose of two parts: 

- q qA E  - elements, which correspond to the expected result are considered to be correct predictions;  

- q qA E  - unexpected recommendations, which are considered to be false predictions and named as 

malfunctioning. 
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Besides, ROSE can have missed objects: 

- q qE A  - predictions are absent and are named as false negatives.  

Sets qA  и qE  indicated on the Fig. 3.  

For the result estimation qA  we use two dimensions from obtained information:  

- accuracy qP  - which part of the returned elements was virtually right, i.e. anticipated by the client – the higher 

the accuracy, the less dummy inclusions; 

- review qR  - percent of accurate predictions. The upper response, the less pseudo inclusions.  

| |

| |

q q
q

q

A E
P

A


  and 

| |

| |

q q
q

q

A E
R

E


  

 
Fig. 3. Accuracy and review 

In case, when low essences do not return ( qA  blank), we determine accuracy as 1qP  , and in an occasion, when 

any essences are not anticipated, we determine the review as 1qR  . 

Our purpose is to seek tall accuracy, as well as high review meanings, this means to recommend everything 

(review 1) and only expected objects (accuracy 1). In practice, however, review and accuracy negatively correlate 

with each other. For high review, it is possible to return many or even all elements, which leads to low accuracy. On 

the other hand, it is possible to obtain high accuracy but low review only recommending several certain elements. 

For each request iq  we obtain a pair with precision review ( , )q qP R . We bind these pairs into one pair, applying 

two various methods of average from data search. 

Macro-evaluation just accept average meaning of pairs of precision review: 
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This treatment defines prognostic power for each request, using meaning of accuracy and review for each request.  

Macro-evaluation builds average pair of accuracy-review on the basis of elements. It uses not meanings of 

accuracy and review of single requests, but amounts of returned, accurate and desired elements.  
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Distinction betwixt macro-evaluation and micro-evaluation is significant. Micro-evaluation calculates mean 

accuracy and review on each element, but not on the request. This is pictorial in the incoming sample:  

Lets’ assume, we have two talks: 

- talk A from 200 pupils, 50 of each wear spectacles. In such a way, correlation for this lecture is 25%. 

- talk B with 40 pupils, 30 of which wear glasses. In the result of which correlation is 75%. 

Averaging these indicators with macro-and micro-evaluation we obtain:  

- Macro-estimation accepts average meaning of either coefficients:  
25%  75%

  50%
2


  
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Mean value is calculates on the layer of lecture. This means, that 50% of students which wear glasses are 

participating in lecture in average.  

- Micro-evaluation, on the contrary, calculates average meaning on the level of a student: 

 

  
 

If students A  and B  do not intercross, this denotes, that each third pupil of this two talks wears spectacles.  

This sample indicates that it is important carefully to use and interpret average meaning.  

Conclusion 

Numeral evaluation of the results. ROSE can be useful tool for requests production about further changes and 

warnings upon lacking shifts. Nevertheless, the larger it is possible to obtain lessons from the bygone, the better and 

more the offers maybe done: 

1. For stabile schemes, such as GCC, ROSE produces a set of accurate proposals: 44% connected files and 28% 

of connected objects can be predicted with accuracy around 40% for each separate proposal and probability more than 

90% for three best proposals.  

2. For fast developing systems, such as KOFFICE or JEDIT, the most useful offers of ROSE are located on the 

level. In general, it is unsurprisingly stable, because ROSE will should forecast renewed functions, whether, likely, 

are not available for every treatment.  

3. In 4-7% of all transaction errors ROSE accurately detects a lack change. If such warnings appears, it most be 

take it earnestly, because alone 2% of all deals induce dummy alerts.  

Prospects of the system improving  

1. Aspect identification. If the parts of the program were changed together several times, common abstractions 

of separate changes can be candidates for facets .Then connection development will be transformed into a single 

syntactic essence, so further changes may be performed only in one site.  

2. Rule representation. Precepts, discovered by ROSE, depict the process of developmentally s/w, which can be 

or not be assumed operation. In order to do these rules clear, it is possible to use visual analysis for detection of 

conformities in logically connected elements.  

3. Taxonomies. Each change in the method presumes the change of incoming class, which also presumes changes 

in attached files or packet. It is possible to use taxonomies for detection of such models as “this change presumes the 

change in this packet” (and not “in this method”). They can be under accurate in position, but will ensure more high 

certainty. 

4. Consistency rules. Just now we bind only changes, which are happening in one transaction. Further we will 

also detect the rules for several transactions: “System is always tested before issue” (as stated by the correspondent 

changes).  

5. Additional sources of the data. Archived shifts comprise larger than only a creator, date and position. It was 

possible to scan journal messages (including one of changes, which is necessary to be performed), in order to define, 

which problem does the change relate to.  

6. Program analysis. One more not using source of the data is a program analysis. Albeit our treatment can find 

connection between elements, which are not arise programs, knowing in programs semantic also can help to separate 

connected changes with probable and improbable.  

Reference list 

1. “Evaluating and improving fault localization” by Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, 

Michael D. Ernst, Deric Pang, and Benjamin Keller. In ICSE 2017, Proceedings of the 39th International Conference on Software 

Engineering, (Buenos Aires, Argentina), May 2017. 

2. S.L. Pfleeger, J.M. Atlee. Software Engineering: Theory and Practice, 4th edition, Pearson Education, 2010. 

3. Sommerville. Software Engineering, 9th edition, Pearson Education, 2011. 

4. “Verifying Invariants of Lock-free Data Structures with Rely-Guarantee and Refinement Types” by Colin S. Gordon, 

Michael D. Ernst, Dan Grossman, and Matthew Parkinson. ACM Transactions on Programming Languages and Systems, vol. 39, 

no. 3, May 2017, pp. 11:1-11:54. 

5. T. Mens, S. Demeyer (Eds.), Software Evolution, Springer, 2008. International Conference on Software Maintenance, 

IEEE International Conference on Program Comprehension, IEEE. 



 The Rules of the Intelligent Software Analysis Association 

Yousif Hardan Sulaiman 

 

  669 

 
V. 27-2018 

6. SoftChange. Project homepage. http://sourcechange.sourceforge.net/, June 2004. 

7. Daniel German and Audris Mockus. Automating the measurement of opensource projects. In Proceedings of ICSE ’03 

Workshop on Open Source Soft-ware Engineering, Portland, Oregon, USA, May 2003. 

8. Bloof. Project homepage. http://bloof.sourceforge.net/, June 2004. 

9. Dirk Draheim and Lukasz Pekacki. Process-centric analytical processing of version control data. In Proc. International 

Workshop on Principles of Software Evolution (IWPSE 2003), Helsinki, Finland, September 2003. IEEE Press. 

10. Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history database from version control and bug 

tracking systems. In Proc. International Conference on Software Maintenance (ICSM 2003), Amsterdam, Netherlands, September 

2003. IEEE. 

11. Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating bug report data for feature tracking. In Proc. 

10th Working Conference on Reverse Engineering (WCRE 2003), Victoria, British Columbia, Canada, November 2003. IEEE. 

12. Davor ˇCubrani´c and Gail C. Murphy. Hipikat: Recommending pertinent software development artifacts. In Proc. 25th 

International Conference on Software Engineering (ICSE), pages 408–418, Portland, Oregon, May 2003. 

13. Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. CVS release history data for detecting logical couplings. In Proc. 

International Workshop on Principles of Software Evolution (IWPSE 2003), pages 13–23, Helsinki, Finland, September 2003. IEEE 

Press. 

14. James M. Bieman, Anneliese A. Andrews, and Helen J. Yang. Understanding change-proneness in OO software through 

visualization. In Proc. 11th International Workshop on Program Comprehension, pages 44–53, Portland, Oregon, May 2003. 

15. Lijie Zou and Michael W. Godfrey. Detecting merging and splitting using origin analysis. In Proc. 10th Working 

Conference on Reverse Engineering (WCRE 2003), Victoria, British Columbia, Canada, November 2003. IEEE. 

16. Annie Tsui Tsui Ying. Predicting source code changes by mining revision history. Master’s thesis, University of British 

Columbia, Canada, October 2003. 

17. Amir Michail. Data mining library reuse patterns in user-selected applications. In Proc. 14th International Conference 

on Automated Software Engineering (ASE’99), pages 24–33, Cocoa Beach, Florida, USA, October 1999. IEEE Press. 

18. Annie Chen, Eric Chou, Joshua Wong, Andrew Y. Yao, Qing Zhang, Shao Zhang, and Amir Michail. CVSSearch: 

searching through source code using CVS comments. In Proc. International Conference on Software Maintenance (ICSM 2001), 

pages 364–374, Florence, Italy, November 2001. IEEE. 

19. David L. Atkins. Version sensitive editing: Change history as a programming tool. In B. Magnusson, editor, Proceedings 

of System Configuration Management SCM’98, volume 1439 of LNCS, pages 146–157. Springer-Verlag, 1998. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


